The Fermi bubbles: update on multi-wavelength observations, numerical simulations, and implications to the past activities in the Galactic center

Meng Su

Pappalardo/Einstein fellow MIT

6th Fermi Symposium

Nov. 12th, 2015

Fermi 1.6 year all-sky gammaray maps at different energy

FB from six years LAT data

FB from six years LAT data

FB has a hard spectrum with high energy cut-off

FB has a hard spectrum with high energy cut-off

• 85-120 GeV:

• 120-160 GeV

FB disappears at >150 GeV

Divide the bubble into pieces...

Divide the bubble into pieces...

No evidence for spectral variation across Bubbles at mid-high latitude

However, it's a puzzle!

Interstellar radiation field Predicted bubble spectrum

MS & Finkbeiner (2014)

Analysis by Fermi Collaboration on 50 months data, Ackermann et al '14

Microwave counterpart of FB

Planck 30 and 44 GHz haze map

Credits: ESA/Planck Collaboration.

Haze superimposed over the FB

Credits: ESA/Planck Collaboration.

Leptonic

(electrons scattering on interstellar radiation)

or

hadronic?

(protons scattering on gas)

Leptonic model

Good match to microwave data - but spatial invariance of spectrum is surprising

Fermi-LAT collaboration (2014)

Hadronic model

In hadronic scenario, if proton spectrum extends to high (PeV) energies, Bubbles could contribute high-energy neutrinos detectable by IceCube

Fermi-LAT collaboration (2014)

Properties of the gamma-ray Bubbles

- ~Flat spectrum in E²dN/dE from ~I-150 GeV, apparent cutoff above 150 GeV.
- Total gamma-ray luminosity \sim 5 x 10³⁷ ergs/second.
- Spectrum appears close-to-uniform across the Bubbles, above 10 degrees in Galactic latitude.
- Sharp edges, ~few degrees in width.
- What about other wavelengths? Microwave, X-ray, radio?

Magnetic field structure of the FB

 Faraday rotation measure: a birefringence effect when linearly polarized light travels through a magnetized media.

$$\Delta \psi = \text{RM} \lambda^2 \sim \int_{source}^{observer} n_e(l) B_{\parallel}(l) dl$$

 Radio polarization (magnetic field perpendicular to the line of slight)

Rotation measure sky map from Very Large Array

Taylor et al. (2009) MS in preparation

Rotation measure changes at the FB edge

New data from Jansky Very Large Array

ROSAT reveals the bubble edge in X-ray

Su, Slatyer, Finkbeiner (2010)

FB has a sharp edge in X-ray

Mosaic XMM-Newton Observations on the FB edge

MS et al. in preparation

MS et al. in preparation

Expanding bubbles with an age ~Myr? (UV absorption lines with Hubble)

Two high-velocity metal absorption components, at $v_LSR=-235$ and +250 km/s, suggest an origin on the front and back side of an expanding biconical outflow emanating from the Galactic Center over the last $\approx 2.5-4.0$ Myr

Fox et al. (2014)

Fossil imprint on the Magellanic Stream: a 'Seyfert flare' from the GC ~ I-3 Myr ago?

What produced the FB?

- Energetic transients
 - (~10⁶ years, episodic)
- Moderate energy input
 - (~10⁹ years, persistent)

(Crocker & Aharonian 2011)

- Black hole "burp" (jet)
- Accretion disk outflow
- Starburst wind bubble
- Dark matter

 FB: remnant of past activity from the Galactic center ~10⁶ years ago, by accretion of the central black hole Sgr A*

Key question: where/how to accelerate/propagate ~TeV cosmic ray electrons within the bubbles

Su, Slatyer, Finkbeiner (2010)

Transient energetic jet (or quasar outflow) from the central BH can produce the bubbles

 $E \sim 10^{57-58}$ erg and requires violent accretion to the BH!

Problems

- Cosmic rays carried by the jet diffuse to today's morphology (B-field confinement)
- Jet direction to be perpendicular to the plane of the Galaxy
- Velocity required in the jet model is as low as ~0.1c
- Typically requires super-Eddington
- X-ray shows no strong shocks as predicted

Fermi Bubbles can be inflated by the wind launched from the hot accretion flow

 $E \sim 10^{55}$ erg with moderate accretion rate Wind power: $\sim 10^{41}$ erg/s

A recombination dominant plasma: a relic of a giant flare of Sgr A*

Recombining plasma model is favored from the Suzaku spectrum

- Shock heated hot plasma? (unlikely)
- Rapid adiabatic expansion (electron temperature)?
- Photoionization by collimated radiation injection?
- Suggest a past Sgr A* activity ~ I 0⁵ years

Nakashima et al. (2013)

How to better measure the gamma-ray spectrum of the Fermi bubbles?

Future high energy gamma-ray instruments

Dark Matter Particle Explorer Satellite

The DAMPE Detector

Plastic Scintillator Detector

Silicon-Tungsten Tracker

BGO Calorimeter

Mass: 1480Kg Power: 500W

Data: 14 GBytes/Day

Life: 5 years

- Altitude: LEO 500 km
- Inclination: 87.4065°
- Sun-synchronous orbit
- Period: 95 minutes
- Launch October 2015

W converter + thick calorimeter (total 32 X₀) + precise tracking + charge measurement → high energy γ-ray, electron and CR telescope

Neutron Detector

Comparison with AMS-02 and Fermi

	DAMPE	AMS-02	Fermi LAT
e/γ Energy res.@100 GeV (%)	1.5	3	10
e/γ Angular res.@100 GeV (°)	0.1	0.3	0.1
e/p discrimination	10 ⁵	10 ⁵ - 10 ⁶	10 ³
Calorimeter thickness (X ₀)	31	17	8.6
Geometrical accep. (m ² sr)	0.29	0.09	1

The reconstruction raw energy versus the incident electron energies

The energy resolutions change with the incident electron energies

HERD Conceptual Design

Silicon-Tungsten Tracker + LYSO Calorimeter

Large High Altitude Air Shower Observatory (LHAASO)

Two Gamma Ray Astronomic Devices

- A Wide FOV Survey Facility for more sources
- A Spectrometer for deep study of interesting sources: spectroscopy & morphology

- Complementary to CTA
- Unique for CR measurements at the knees

The most Sensitive detector for 10 TeV y-sky

A few hundred extra-galactic sources are expected!

Wide FOV and full duty cycle

E = E_{median} [TeV]

Cao et al. arXiv:1407.4530

DAMPE/HERD/LHAASO will extend the FB spectrum up to ~10 TeV

